

Low Current Consumption 300mA CMOS Voltage Regulator

RoHS Compliant Product A suffix of "-C" specifies halogen or lead -free

DESCRIPTION

The SM6330P50-C is a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small.

The SM6330P50-C can deliver 300mA output current and allow an input voltage as high as 18V.

The SM6330P50-C is very suitable for the battery-powered equipment, such as RF applications and other systems requiring a quiet voltage source.

FEATURES

- Low Quiescent Current: 2µA
- Operating Voltage: 2.5V~18V
- Output Current: 300mA
- Low Dropout Voltage: 160mV @100mA(Vout=3.3V)
- Output Voltage: 1.2V~5V
- High Accuracy: ±2%/±1% (Typ.)
- High Power Supply Rejection Ratio: 65dB @1kHz
- Low Output Noise: 27xVout µVRMs (10Hz~100kHz)
- Excellent Line and Load Transient Response
- Built-in Current Limiter, Short-Circuit Protection
- Over-Temperature Protection

MARKING

A7PDD - Lot Code

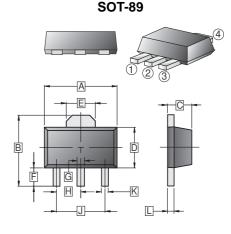
PACKAGE INFORMATION

Package	MPQ	Leader Size
SOT-89	1K	7 inch

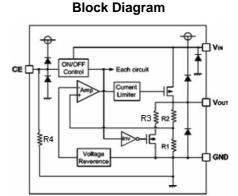
ORDER INFORMATION

Part Number	Туре
SM6330P50-C	Lead (Pb)-free and Halogen-free

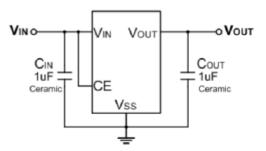
PIN CONFIGURATION


Pin No.	Name	Function			
1	Vss	Ground			
2	VIN / CE	Power Input / Chip Enable Pin			
3	Vout	Output			

RECOMMENDED OPERATING CONDITIONS


Parameter	Symbol	Rating	Unit
Supply Voltage @V _{IN}	Vcc	2.5~18	V
Operating Junction Temperature Range	TJ	-40~125	°C
Operating Free Air Temperature Range	TA	-40~85	°C

http://www.SeCoSGmbH.com/


Any changes of specification will not be informed individually.

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	KEF.	Min.	Max.	
А	4.40	4.60	G	0.40	0.58	
В	3.94	4.25	Н	1.50 TYP		
С	1.40	1.60	J	3.00 TYP		
D	2.25	2.60	К	0.32	0.52	
Е	1.55 TYP.		L	0.35	0.44	
F	0.89	1.20				

Typical Characteristics

Low Current Consumption 300mA CMOS Voltage Regulator

ABSOLUTE MAXIMUM RATINGS (T_A=25, unless otherwise noted.)

Parameter		Symbol	Ratings	Unit	
Input Voltage ²		Vin	-0.3~24	V	
Output Voltage ²		Vout	-0.3~10	V	
CE Pin Voltage		VCE	-0.3~24	V	
Output Current		Ιουτ	600	mA	
Power Dissipation		PD	0.8	W	
Lead Temperature (Soldering, 10 sec)		TSOLDER	260		
Operating Junction Temperature Range ³		TJ	-40~125	°C	
Storage Temperature Range		T _{STG}	-40~125		
ESD Rating ⁴	Human Body Model		8	kV	
	Machine Model	V _{ESD}	400	V	

Notes:

1. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

2. All voltages are with respect to network ground terminal.

3. This IC includes over temperature protection that is intended to protect the device during momentary overload. Junction temperature will exceed 125°C when over temperature protection is ac tive. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

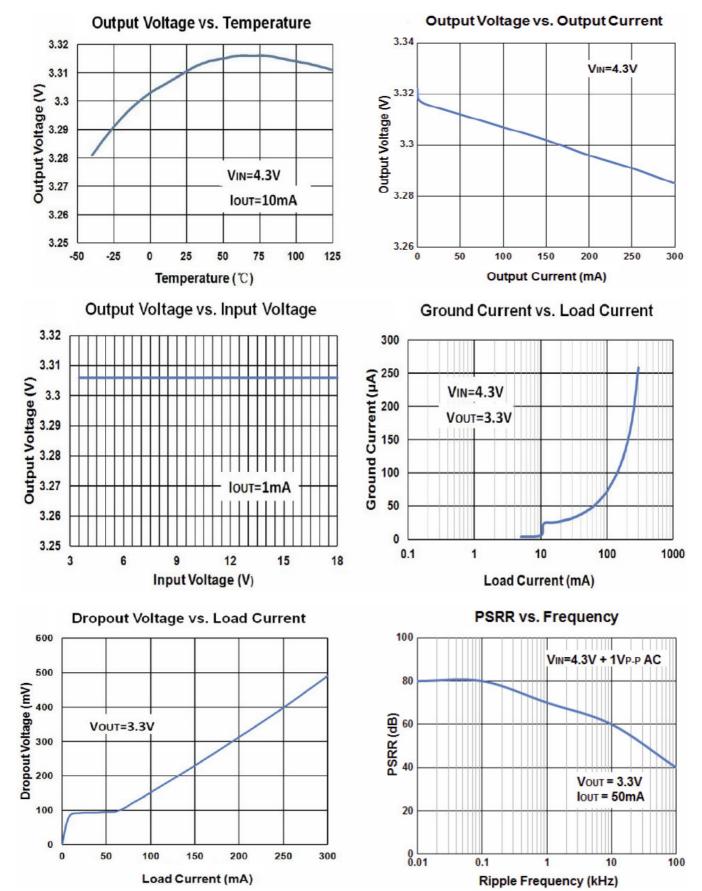
4. ESD testing is performed according to the respective JESD22 JEDEC standard. The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

ELECTRICAL CHARACTERISTICS (VIN=VOUT+1V, CIN=COUT=1µF, TA=25°C, unless otherwise specified)

Parameter	Symbol	Test Condition		Min.	Typ. ¹	Max.	Unit
Input Voltage	VIN			2.5	-	18	V
Output Voltage Range	Vout			1.2	-	5	V
DC Output Accuracy		I _{OUT} =1mA		-2	-	2	%
DC Output Accuracy				-1	-	1	%
Dropout Voltage ²	Vdif	louт=100 Vouт=3.		-	160	-	mV
Supply Current	lss	lout=0.	Ą	-	2	5	μA
Line Regulation	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	lout=10r Vout 1V≤V⊮		-	0.01	0.3	%/V
Load Regulation	ΔV _{OUT}	V _{IN} =V _{OUT} 1V, 1mA≤I _{OUT} ≤100mA		-	10	-	mV
Temperature Coefficient	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta T_A}$	I _{OUT} =10mA, -40℃ <t <sub="">A<125℃</t>		-	50	-	ppm
Output Current Limit	ILIM	Vout=0.5*Vout(Normal), Vin=5V		350	500	-	mA
Short Current	I _{SHORT}	V _{OUT} =V _{SS}		-	25	-	mA
		louτ=50mA	100Hz	-	80	-	dB
Power Supply Rejection Ratio	PSRR		1kHz	-	65	-	
	1 OKK		10kHz	-	50	-	
			100kHz	-	45	-	
Output Noise Voltage	Von	BW=10Hz~100kHz		-	27* V _{OUT}	-	μV _{RMS}
Thermal Shutdown Temperature	T _{SD}			-	150	-	C
Thermal Shutdown Hysteresis	∆Tsd			-	20	-	C
Standby Current	I _{STBY}	CE=V _{SS}		-	-	0.3	V
CE "High" Voltage	Vce"H"			1.5	-	Vin	v
CE "Low" Voltage	Vce"L"			-	-	0.3	v
COUT Auto-Discharge Resistance	Rdischrg	Vin=5V, Vout=3V, Vce=Vss		-	150	-	Ω

Notes:

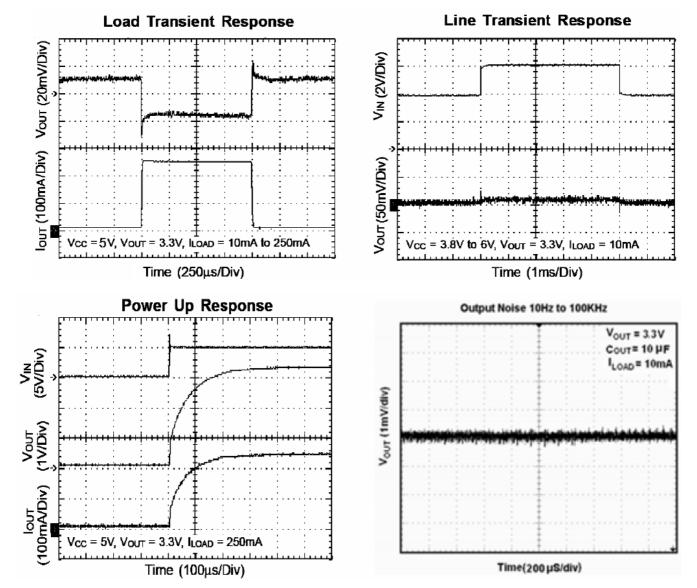
1. Typical numbers are at 25° and represent the most likely norm.


2. V_{dif}: The difference of output voltage and input voltage when input voltage is decreased gradually till output voltage equals to 98% of V_{out.}

http://www.SeCoSGmbH.com/

Low Current Consumption 300mA CMOS Voltage Regulator

CHARACTERISTICS CURVE


http://www.SeCoSGmbH.com/ 08-Jun-2020 Rev. A

Any changes of specification will not be informed individually

Low Current Consumption 300mA CMOS Voltage Regulator

CHARACTERISTICS CURVE

APPLICATION INFORMATION

Selection of Input/ Output Capacitors

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current. A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC-DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step.

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.

The LDO also requires an output capacitor for loop stability. Connect a 1µF tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.